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Abstract. The properties of two-dimensional magnetic traps for laser-cooled atoms are analysed using
complex functions. The two components of the magnetic field from a series of parallel, infinitely long,
current-carrying wires are represented by a single complex number. The regions of the field where param-
agnetic atoms can be trapped occur where the magnetic field is zero. The locations of the zeroes of the field
are obtained as the solution to a polynomial and the multiplicity m of the solution determines both the
2(m + 1)-pole nature of the trap and the field gradient through the centre. The zeroes of the field can be
merged or split by varying the locations of the currents, their strengths or by applying a uniform magnetic
field. The theory is applied to magnetic traps created from long thin wires or permanent magnets on a
substrate. The properties of a number of magnetic trap configurations used for atom guides are discussed.

PACS. 03.75.Be Atom and neutron optics – 03.75.-b Matter waves – 41.20.Gz Magnetostatics; magnetic
shielding, magnetic induction, boundary-value problems

1 Introduction

The availability of slow moving (ultra-cold) atoms pre-
pared by laser cooling techniques has driven new devel-
opments in microscopic-scale atom optical devices. These
devices employ mechanisms for confining the atoms in two
dimensions while allowing motion in the third, thereby
creating tube-like structures, or guides, for transporting
and manipulating the atoms [1–14]. The most common
method for confining paramagnetic atoms is based on
magnetic fields created by one or more current-carrying
wires, sometimes in the presence of a uniform applied mag-
netic field. The configuration of magnetic fields creates
one or more regions where the magnitude of the field has
a minimum in two-dimensions. These minima can be com-
bined or split to create junctions (or beam splitters) [1,2,
4,12,14], they can be brought into proximity to form tun-
nelling junctions [15] or compressed to create quantum
point contacts [7]. By applying additional fields or alter-
ing the currents, the atoms can be trapped [2,4,16–20] and
they can be switched from one guide to another [5,13,20].
Many of these systems have been miniaturised using litho-
graphic techniques so that different trapping structures
may be created on a single substrate. The result is an in-
tegrated atom optical device: the atom chip. The current
goal is to reduce the transverse energy of the atoms suffi-
ciently that the mode structure of the atomic de Broglie
wave in the guide dominates. If this is achieved, then the
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guides may be considered as atom wave guides and this
leads to the possibility of creating atom interferometers
on a chip. Quantum control of the atoms may also enable
the construction of quantum computers using ultra-cold
atoms [21]. Some further applications of these systems are
discussed in [20].

In this paper we wish to determine the properties of
magnetic traps created from current carrying wires or per-
manent magnets on a substrate, as would be made using
lithographic techniques. In general it is difficult to obtain
analytical expressions for the magnetic fields associated
with wires of finite length taking into account their ge-
ometry. Although numerical techniques can be applied to
the problem the results can be unexpected and the gen-
eral principles governing the behaviour of the traps are
not easily established. For example, two wires joining into
one wire in the presence of an applied field would be ex-
pected to produce two magnetic traps that merge into
one [12]. However, this configuration produces an addi-
tional spurious trap that splits from the merge point and
converges onto the wire junction. Although the situation
can be modelled precisely for wires of any cross-section,
this unexpected behaviour is difficult to explain. An un-
derstanding of the relationship between the locations of
the wires or sources of magnetic fields, the uniform ap-
plied magnetic field and the locations and properties of
the trapping regions they create is important for design-
ing atom optical devices. For this reason we describe a
simple, approximate theory using complex numbers that
enables us to analyse the general properties of magnetic
traps.
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In Section 2 we review the theory required to analyse
the traps, which are centred on the zeroes of the mag-
netic field, and show that for any number of wires in the
presence of a uniform magnetic field the properties of the
magnetic traps are governed by a simple polynomial in
the complex number ζ = x + iy. In Section 3 we con-
sider solutions to this polynomial for a variety of two-
dimensional trap configurations produced by wires on a
substrate. From this we demonstrate the value of the dis-
criminant of the polynomial. To describe the complicated
behaviour of the trapping regions as the applied field or
the wire spacing is varied, we introduce the concept of a
zero diagram that locates the zeroes in the complex plane.
An example design of an atom guide is given. In Section 4
we discuss the conditions under which the simple theory
can be applied to more realistic situations.

2 Theory

That magnetic fields in a plane can be represented by com-
plex functions is well-known. Beth [22–25] used complex
functions to describe the magnetic fields from infinitely
long wires of arbitrary cross-section and corrections to his
work were given recently by Tominaka [26]. Hard perma-
nent magnets also can be modelled by electric currents,
such as described by Halbach [27], and complex func-
tions can represent fields from long permanent magnets
where the magnet ends can be ignored. In this regard,
this present paper is an extension of our earlier work on
permanent magnets [28].

Since the fields must only vary in the plane, the sources
of the magnetic fields must be approximated by sets of par-
allel, infinitely-long lines of current. We take these currents
in the x–z-plane and directed parallel to the z-axis. Then
the two components of the magnetic field, Bx and By vary
in the x–y-plane and can be represented by

b(ζ) ≡ Bx(x, y)− iBy(x, y) (1)

which depends on the complex variable ζ = x+ iy. In the
following we shall refer to b as the magnetic field. The
magnetic field associated with a set of N wires in the
x–z-plane with currents running parallel to the z-axis is
given by

b(ζ) =
−iµ0

2π

N∑
n=1

In
ζ − ζn

+ ba. (2)

We have included a uniform applied field ba and taken
the wires to be infinitely thin. In is the current in the nth
wire located at ζn and µ0 is the permeability of free space.
(The magnetic fields are expressed in SI units.)

Atoms can be trapped in the x–y-plane in regions
where the magnitude of the field has a minimum. We
use the term “two-dimensional trap” to refer to a system
where the atoms are restrained in two dimensions but can
freely propagate in the third dimension. Since the minima
occur where the magnetic field is zero, the locations ξn of

the trap centres are found by solving (2) with b(ξn) = 0.
If we define

a = (i2π/µ0)ba (3)

then the zeroes of the field occur where

N∑
n=1

In
ζ − ζn

+ a = 0. (4)

To solve (4) we multiply by the common denominator
(ζ − ζ1)(ζ − ζ2)...(ζ − ζN ) and obtain in the numerator
a polynomial P in ζ

P =
N∑
n=1

In{(ζ−ζ1)(ζ−ζ2)...(ζ−ζn−1)(ζ−ζn+1)...(ζ−ζN )}

+ a(ζ − ζ1)(ζ − ζ2)...(ζ − ζN ) (5)

where the first term corresponds to sums of products but
with the term (ζ − ζn) missing. The zeroes of the field
occur where P = 0. Thus the locations of the trapping
regions are given by the solutions to a polynomial with a
degree N equal to the number of current-carrying wires.
The fundamental theorem of algebra states that this poly-
nomial can be expressed as a product of linear factors,

P = a(ζ − ξ1)(ζ − ξ2)...(ζ − ξN ) (6)

where a, the applied field, is a complex constant, and ξn
is the nth root of P . Since these roots correspond to the
zeroes of b we shall refer to them as zeroes. The zeroes of P
depend on both the currents In and on the applied field a.
(In Sect. 3 we shall solve (5) to obtain these zeroes for a
number of configurations of wires.) When the polynomial
is expressed in the form (6) a number of useful properties
of the magnetic traps can be determined by inspection.

The first result is that if there are N wires then there
are no more than N distinct roots of the polynomial and
therefore there is a maximum of N zeroes or trapping
regions associated with the field. For example, if we re-
quire three traps then we need at least three current-
carrying wires and an applied field. Since a long, thin
magnet with a uniform magnetisation is equivalent to two
current-carrying wires, then each magnet of this type will
have two zeroes associated with it.

If m of the roots or zeroes of P are equal, then that
zero is said to have a multiplicity of m. The multiplicity
determines the multi-pole nature of a trap. It is a property
of complex numbers [29] that the argument of a complex
function will vary through 2πm as we move along a path
encircling m zeroes. Since the argument of b is related to
the direction of the magnetic field, then the field direc-
tion along a path about a trap will rotate through some
multiple of 2π. Examples are shown in Figure 1 where a
zero of P with a multiplicity m = 1 is associated with
a quadrupole trap and a zero with m = 2 is a hexapole
trap. In general, a trap with multiplicity m is a 2(m+ 1)-
pole trap. Thus, once the polynomial is expressed in the
form (6), the multipole nature of a trap can be determined
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(a) (b)

Fig. 1. The magnetic field lines associated with a magnetic
trap with multiplicity m. The circle shows the closed path
around the zero and the arrows indicate the direction of the
field on the path; (a) quadrupole m = 1; (b) hexapole m = 2.

by simple inspection. In this theory, the quadrupole trap is
the fundamental object. There is no lower-order trap and
all higher-order traps are formed by overlaying quadrupole
traps. To create a 2(m+ 1)-pole trap we must adjust the
electric currents and the applied field so that m of zeroes
of the field overlap. The values required for this can be
obtained from (6).

Since the degeneracy of the solution to P = 0 equals
the multiplicity, then the multiplicity also determines the
variation of the field through the trap centre: that is, if P
has a multiplicity m at ξn then the first non-zero term
in a Taylor series expansion of b must vary at least as
b(m)(ξn)(ζ − ξn)m, where b(m)(ξn) is the mth derivative
of b evaluated at ξn. In this case the magnetic field through
the trap centre will vary with power m. For a quadrupole
trap,m = 1 and the first non-zero term in the Taylor series
expansion will vary linearly, b ∼ (ζ − ξn). This yields the
well-known result that the quadrupole trap is associated
with a linear variation of the magnetic field through its
centre. Likewise, for the hexapole trap m = 2 and the
first non-zero term in the Taylor series expansion varies
quadratically, b ∼ (ζ − ξn)2. The variation of the field
through the centre of the trap at ξn, obtained using (6), is

b(m)(ξn) =
(
−iµ0

2π

)
× am!(ξn − ξ1)(ξn − ξ2)...(ξn − ξj)...(ξn − ξN )

(ξn − ζ1)(ξn − ζ2)...(ξn − ζN )
,

ξj 6= ξn for 1 ≤ j ≤ N. (7)

If N = 1, then we take the product in the numerator of (7)
to be equal to 1. Given the zeroes ξn of the polynomial
and the locations of the wires it is then a simple task to
compute the variation of the field through the centre of
any trap using (7). Furthermore, since the applied field a
does not vary with position, then the variation of b with
distance must depend only on the currents and the loca-
tions of the wires. Since a zero gradient exists through the

Fig. 2. The geometry showing the wires on a substrate and the
two-dimensional complex plane. The spacing between the wires
depends on where we choose the complex plane to intersect the
substrate.

centre of the hexapole trap, then this zero gradient must
also exist at this same position in space for any applied
field. We shall use this fact in Section 3.3 when we apply
the theory to the design of an atom guide.

We summarise the trap properties obtained so far that
can be determined from the polynomial:

1. the locations of the zero field regions are obtained from
the zeroes, or roots, of the polynomial P given by (5);

2. the degree of the polynomial is equal to the number of
wires N used for the trap and this determines the max-
imum number of trapping regions that can be obtained
in an applied field;

3. a zero of P with a multiplicity m is associated with a
2(m+ 1)-pole trap;

4. the minimum rate of variation of the field through the
centre of a trap is proportional to the distance from
the centre raised to the power m.

Since this information can be determined by inspec-
tion from (6), then the problem of analysing the prop-
erties of the magnetic traps has been reduced to one of
solving a polynomial. In the Section 3 below we consider
some examples of configurations of two-dimensional mag-
netic traps and examine the dependence of the locations
of the trapping regions on the applied field and the lo-
cations of the wires. Some of these configurations show
surprising behaviour as the trap parameters are changed
which is related to the properties of the discriminant of
the polynomial.

3 Atom traps

In this section, the theory is applied to configurations of
two-dimensional traps. We restrict the discussion to traps
created by wires placed on the x-axis (Fig. 2). Although
the theory is two-dimensional, we apply it to situations
where the sources of the magnetic fields vary slowly with z.
In this case it is assumed that the contributions to the
magnetic field in the plane from sources out of the plane
are small so that the problem is quasi two-dimensional.
The validity of this assumption is investigated in Section 4.
Here we consider a few examples to demonstrate the the-
ory and its application. These are two-wire and four-wire
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Fig. 3. Configurations of two current-carrying wires on a
plane and two directions of applied fields. All possible com-
binations of circuits can be made from parts or all of these in
combination.

configurations in applied magnetic fields. The theory has
been applied to other configurations, applicable to per-
manent magnets, including the equivalent of three and
six wires [28]. In the discussions, it is useful to remember
that the real part of the complex field b corresponds to Bx
and the imaginary part to −By (see Eq. (1)). In addition,
the real part of the rescaled applied field a (see Eq. (3))
corresponds to a field applied in the y-direction and the
imaginary part of a corresponds to a field applied in the
x-direction.

3.1 Two wires and an applied field

A set of two-wire configurations on a substrate are shown
in plan view in Figure 3. The x-axis runs horizontally
across the wires and the y-axis lies perpendicular to
the plane. In addition to these combinations we can
apply magnetic fields in the two orthogonal directions
as shown [5,8,9,12,14,21]. Two wire configurations were
analysed by Thywissen et al. [3] and also have been used
to guide atoms [8,9,11,13,20]. In addition, the two-wire
configuration with a time-varying applied field has been
proposed as an interferometer [14]. All of these configura-
tions are described by the polynomial (5) for two wires

P = I1(ζ − x1) + I2(ζ + x1) + a(ζ − x1)(ζ + x1)

= aζ2 + (I1 + I2)ζ + x1(I2 − I1) + ax2
1 (8)

where, for convenience, we have placed the wires symmet-
rically about the y-axis at ±x1. Although (8) is strictly
only valid for the parallel wire configurations, it describes
the other configurations if x1 is made to vary along the
wire direction (such as in Fig. 2). Since the number of
wires is N = 2, then we have two zeroes in the field at
most. These are located at

ξ1,2 = (−(I1 + I2)±
√
D)/2a (9)

where the discriminant is

D = (2ax1 + I1 − I2)2 + 4I1I2. (10)
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Fig. 4. A zero diagram associated with an applied field for the
two-wire trap. The wires are located at x = ±1 and have equal
currents of unit strength. The field is applied in the x-direction.
The insets show the magnetic field contours at the labelled
points. Refer to text for details.

The behaviour of the zeroes with changing position, cur-
rents or applied field is governed by D: the real and imag-
inary components of the square root in (9) depend on
the sign of D. We first consider the situation where the
two currents are equal and running in the same direction:
I1 = I2 ≡ I. This corresponds to Figures 3a, 3c and 3e.

For magnetic fields applied in the y-direction, a is real,
D is always positive and real so that the zeroes appear on
the x-axis. This configuration has been used as an atom
guide [8]. One of these zeroes (associated with the + sign
in Eq. (9)) lies between the two wires and the other lies
either to the left or the right of the two wires, depending
on the relative signs of the current and the field. Since
both solutions are distinct, the multiplicity m = 1 and we
have two quadrupole traps.

If the field is applied in the x-direction, a is imag-
inary and the discriminant now has a negative term:
D = 4I2−4x2

1|a|2. Thus ξ1,2 can be complex, having both
real and imaginary parts. This means that the zeroes will
follow a curved path in the x–y-plane as the currents or
the field vary. We shall find that the zeroes can exhibit
a complicated motion which is more easily understood by
plotting the trajectories of the zeroes in the complex plane
as one of the parameters is varied. We shall call this plot
a zero diagram associated with that parameter. A zero di-
agram associated with the applied magnetic field for the
two-wire configuration of parallel and equal currents is
shown in Figure 4. As the applied magnetic field increases
in the x-direction, the zeroes follow the paths indicated by
dark lines. For zero field, the discriminantD is positive. Its
square root is equal to the first term in (9). Thus one zero
lies at x = y = 0 and the other zero lies at infinity. As the
field increases, D becomes smaller, the zero at the origin
shifts upwards and the zero at infinity shifts downwards
along the y-axis. These are labelled as points a in Figure 4.
In this regime both ξ1,2 are imaginary so that the zeroes
remain on the y-axis. As the field continues to increase,
D continues to decrease and eventually becomes zero. At
this point the two zeroes coalesce (point b). The two roots
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of P are now degenerate, the zero has a multiplicity m = 2
and a hexapole trap is formed. If we further increase the
applied field, D becomes negative so that the square root
shifts from real to imaginary. This creates a discontinuous
change in the motion of the zeroes. The two zeroes split
apart but now have a component of motion parallel to the
x-axis (point c). With a further increase in a the zeroes
asymptotically approach the wires. For the field applied in
the −x-direction, the same behaviour is observed but the
paths taken are those in the lower half plane in Figure 4.

The merging of the zeroes to form a hexapole trap is an
important property of these magnetic systems. But, un-
like the quadrupole traps, the hexapole trap only forms at
specific combinations of the parameters, i.e. when D = 0
in (9). In this sense, the hexapole trap is unstable to small
perturbations of the parameters. The merging of the ze-
roes was first used by Fortagh et al. [17] to load cold atoms
into a micro trap. The atoms were originally loaded into
the trap at y = +∞ and then merged into the lower trap
by applying a bias field. Once merged, some of the atoms
transfer into the lower trap. This technique, or variations
on it, is now used routinely.

The merging and splitting behaviour of the zeroes of
the field is a common feature of these magnetic systems
and shows promise for creating junctions in the atom
guides to form beam splitters. For example, a micro-
fabricated one-to-two wire beam splitter has been de-
scribed by Cassettari et al. [12] and its operation has been
demonstrated [13]. In this configuration (Fig. 3c) the spac-
ing between the wires is changed until the two wires join
together, the idea being that the two quadrupole traps
associated with the two wires are transformed into a sin-
gle quadrupole trap associated with one wire. However, as
noted in [12], this configuration does not simply merge the
two zeroes together into one trap but has a second “spu-
rious” zero that forms where the traps merge and that
tracks down onto the wire junctions. This spurious zero is
an undesirable feature of this configuration.

It is instructive to examine the magnetic properties of
two wires as they join using the present theory since joins
form a basic part of many atom optical configurations.
If the currents in the two wires have the same sign then
the currents add at the join (Fig. 3c). If the currents have
equal and opposite signs then they cancel at the join, ef-
fectively eliminating the wire altogether (Fig. 3d). Since
each wire is associated with a zero and a pole, then alter-
ing the number of wires must alter the number of zeroes
and poles. This represents a fundamental change in the
order of the polynomial P (6). The order of P can be al-
tered mathematically in two ways. Firstly, a pole at ζn can
be removed by centring a zero there, ξk = ζn. In this case
a factor (ζ − ξk) in P cancels a factor (ζ − ζn) in the de-
nominator of b, thereby removing the pole. However, the
current In associated with this pole remains and will still
influence the resulting magnetic field. This corresponds to
the situation in Figure 3c. Thus, in the situation where
two wires merge into one, we require one of the zeroes to
be collocated with one of the wires to cancel the pole there.
This is the spurious zero noted in [12] and it must always
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Fig. 5. A zero diagram associated with wire spacing for
the two-wire trap in an applied field. The wires are located
at (a) x = ±1.5, (b) x = ±1, (c) x = ±0.8 and have equal
currents of unit strength. A field of unit magnitude is applied
in the x-direction. The insets show the magnetic field contours
at the labelled points. Refer to text for details.

exist when two wires join in this way. This fundamental
property is difficult to determine from a purely numerical
analysis. Secondly, if we wish to remove a pole n we may
adjust the current in another pole, say k, so that Ik = −In
and then shift pole k to the position of pole n, ζk = ζn.
In this instance, the kth term in (4) cancels the nth term
and both poles are removed. This eliminates two wires
and therefore reduces the number of zeroes in the field by
2. This corresponds to the situation shown in Figure 3d.
Since the wires effectively exist at the same positions, then
so too must their zeroes. In this case we expect the zeroes
also to merge with the wires at their junction.

As an example, we show in Figure 5 the zero diagram
associated with the spacing between the wires in the pres-
ence of a magnetic field applied in the x-direction for Fig-
ure 3c. As before, the discriminant is real and has a neg-
ative term: D = 4I2 − 4x2

1|a|2. The diagram shows the
paths of the zeroes as the spacing decreases. The zeroes
are quadrupole traps that merge when the wires are lo-
cated at x1 = ±|I/a| to form a hexapole trap. Further de-
crease of the spacing results in D becoming negative and
the zeroes separating along the y-axis. The lower “spuri-
ous” zero joins with the wires and cancels out one of the
poles when the separation becomes zero. Beam splitters
formed by the splitting of a wire will always have a zero
formed at the wire junction that merges at the waveg-
uide split point (point b in Fig. 5). This is an undesirable
feature of these systems. A better beam splitter configu-
ration involves the two wires coming closer together but
then running parallel once they reach x1 = ±|I/a| where
the hexapole trap forms [12].

For the case of anti-parallel wires, Figures 3b, 3d
and 3f, with I2 = −I1 ≡ I, the discriminant is D =
4ax1(ax1 − 2I) and the zeroes, forming two quadrupole
traps, are symmetrically placed about the origin. If the
field is applied in the y-direction so that a is real, then
the zeroes lie on the x-axis for large separations. In this
case, the system looks like two single wires. As the separa-
tion decreases the zeroes approach one another and meet
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Fig. 6. Examples of configurations of four current-carrying
wires on a plane and two directions of applied fields: (a, b)
guides; (c, d) beam splitters.

at the origin when x1 = 2I/a. Here D = 0 and we have
a hexapole trap. With a further decrease in separation, D
becomes negative, the solutions (9) become imaginary and
the two zeroes diverge from one another along the y-axis.
The farthest apart they become is ξ1 − ξ2 = 2I/a which
occurs when x1 = I/a. After this, the zeroes approach
again and when the spacing becomes zero they, and the
two poles associated with the wires, meet one another at
the origin. When used in an atom optical device, the ze-
roes will be found at the surface of the substrate but one
of them will appear to “leap” from the surface and then
“fall” down again in the vicinity of the wire join.

3.2 Four wires and an applied field

There are many possible configurations of four wire
systems. Some configurations have been discussed in
the literature [3,4,7,9,10,12,21] and demonstrated with
atoms [9,10]. A few examples are given in Figure 6. The
polynomial is a complicated quartic in ζ which is te-
dious to solve analytically. To simplify the discussion, we
model Figures 6b and 6d. Because the currents in adjacent
wires are opposing, these configurations can also be imple-
mented using permanent magnets [4,30]. The advantage
is that they support at least one guide in the absence of
an applied field and multiple guides and junctions in the
presence of an applied field. We briefly study this configu-
ration because of the unexpectedly complicated behaviour
it exhibits in the presence of an applied field.

Let the four wires be placed symmetrically about the
origin, so that x4 = −x1, x3 = −x2 and consider equal
currents in pairs of wires I3 = I1, I4 = I2 and opposite
currents in adjacent wires I1 = −I2 ≡ I. This gives a
polynomial

P = aζ4 + (2I(x1 − x2)− a(x2
1 + x2

2))ζ2

+ ax2
1x

2
2 + 2Ix1x2(x1 − x2). (11)

This equation is still a quartic but it is now quadratic in ζ2

which is much simpler to solve. Since there areN = 4 wires

X
-2 -1 0 1 2

H
ei

gh
t 

Y

-2

-1

0

1

2

+ +- -

B

a a aa b

c

c

c

c

d

de e

e e

f f

a b c d

e

f

b b

Fig. 7. A zero diagram associated with the field applied in
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there will be four zeroes. These are located at

ξ1,2,3,4 = ±

√
x2

1 + x2
2

2
− I(x1 − x2)

a
±
√
D

2a
(12)

with a discriminant

D = a2
(
x2

1 − x2
2

)2
+ 4I(x1 − x2)

(
I(x1 − x2)− a(x1 + x2)2

)
. (13)

In the absence of an applied field, there are two zeroes at
infinity and at y = ±√x1x2 placed symmetrically about
the x-axis. Thus this configuration supports a guide in
the absence of an applied field. Since the applied field a
is imaginary for the x-direction, we find from (13) that D
is never zero unless the wires are located at the same po-
sitions. Thus there is no hexapole trap possible with this
applied field. This is not true for a field applied in the
y-direction.

The zero diagram associated with the field applied par-
allel to the y-axis, shown in Figure 7, exhibits complicated
behaviour. With a large negative field, the four zeroes sit
close to the four wires: on the outside of the outer wires
and on the inside of the inner wires. This appears like four
single wires. As the field is reduced, two zeroes move away
from the two outer wires along the x-axis through points a.
Similarly, two zeroes from the inner wires move towards
one another. These eventually meet at point b forming a
hexapole trap. The solution then becomes imaginary and
the two zeroes separate along the y-axis, moving towards
points c. When the applied field becomes zero, the two
outer zeroes are at infinity and the two inner zeroes sit
on the y-axis, one above and the other below the x-axis.
As the applied field becomes positive, these zeroes pass
through inner points c. In addition the zeroes at infin-
ity start moving along the y-axis through outer points c.
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These eventually meet the other zeroes at d forming a
pair of hexapole traps. As the field increases further, these
traps split apart and the four zeroes follow paths through e
and meet again at f, forming hexapole traps. Again, with
increasing applied field the zeroes move apart and asymp-
totically approach the wires.

This complicated behaviour of merging and separat-
ing is determined by the multiplicities of the solutions
to (11). The solutions become degenerate when the dis-
criminant (13) becomes zero which occurs for values of
the applied field that satisfy the quadratic equation con-
tained in (13). The solution is

a =
2I

(x1 − x2)

(
1± 2

√
x1x2

x1 + x2

)
(14)

and the zeroes merge at points

ξmerge = ±
√
x1x2(x1 + x2)±√x1x2 (x2

1 + x2
2)

x1 + x2 ± 2
√
x1x2

(15)

where the same sign is chosen within the main square
root. Thus we have four merge-points determined by this
equation. The fifth merge-point (point b in Fig. 7) occurs
where the discriminant in (12) cancels the first term. The
value of the applied field in this case is real and negative

a =
−2I(x1 − x2)

x1x2
(16)

and the zeroes merge at the origin. The parameters used
in Figure 7 are x1 = 1, x2 = 0.5 and I = 1. Using (14–16)
we find that the fields required for the zeroes to merge
are: a = 0.2288, giving zeroes at y = ±1.2493; a = 7.7712
with the zeroes located at x = ±0.7488; and a = −2 with
the zeroes merged at the origin.

Although for N > 1 we have more than one trap, these
are not always accessible. For instance, with a configura-
tion of wires made on a substrate, it is likely that some of
the zeroes will exist within the substrate, below its sur-
face. These are inaccessible to the atoms (although these
zeroes may have use in other applications for controlling
particles or charges moving within the substrate). In this
context, the four-wire configuration has two zeroes acces-
sible above the substrate and is a useful configuration for
creating atom guide junctions using either electric cur-
rents or permanent magnets. In the following section we
give an example design of an atom guide.

3.3 An example atom guide

In this section we apply the simple theory to the design
of an atom guide based on permanent magnets that are
to be formed on a substrate using microlithography. From
Figure 7 we see that it is possible to create a hexapole
trap (point d) that can be split either horizontally or ver-
tically into two quadrupole traps. We exploit this property
to design a guide that has a vertical loop. The location of
the quadrupole traps is controlled by the spacing between

the magnets which is a function of distance z along the
substrate. By reducing and then increasing the spacing
in the presence of an applied field, a horizontal pair of
quadrupole traps will merge into a hexapole trap, split
into a vertical pair of traps, merge again into a hexapole
trap and then separate again horizontally, thereby creat-
ing the vertical loop. In a similar fashion, a horizontal loop
or a combination of horizontal and vertical loops may be
formed.

The important properties of the atom guide are the
locations of the traps and their depths. The locations are
given by (12). The depths of the traps are governed by
the field at the location of the hexapole trap, since the
quadrupole traps are approximately centred about this
point. The hexapole trap forms on the y-axis where the
field gradient is zero. Irrespective of the uniform applied
field, this point is a local extremum in the field magnitude.
When a = 0 the field has a maximum value bmax. To form
the hexapole trap at this location, the applied field must
be −bmax to cancel the maximum. Since the field increases
from zero at the hexapole trap centre and asymptotes to
a as y → ∞ then the applied field determines the depth
of the hexapole trap.

With reference to the four wire case discussed in Sec-
tion 3.2, the spacing s between the magnets is equivalent
to the distance s = 2x1 and the width of each magnet is
w = x2−x1. The current I = Mh is related to the height h
of the magnet and the magnetisation M which is uniform
and directed along the y-axis. The spacing at which the
hexapole trap forms is obtained using (12) with D = 0:

sm = −w ± 2Iw√
−a2w2 − 4Iaw

· (17)

For a magnet spacing s > sm, the two zeroes exist as a
horizontal-pair of quadrupole traps. The traps merge when
the spacing s = sm and then separate again when s < sm
to form a vertical-pair of quadrupole traps. Since neither
a negative spacing nor an imaginary one is physical in
the context of permanent magnets, we take I > 0 and the
positive root in (17). We then find from (17) it is necessary
that a < 0 and a > −2I/w so that a must be negative
and real. This bounds the range of a.

As an example, consider trapping Cs atoms cooled
to 2 µK. Paramagnetic atoms at this temperature will
be trapped by a field of 0.03 gauss. Since the applied field
governs the depth of the traps, we choose a trapping field
significantly larger than this: ba = −0.5 gauss, which is
equivalent to a = −250 A m−1. Assuming a magnetisa-
tion of about 4 000 A m−1 and a magnetic film thickness
of 0.5 µm, then the equivalent current is I = 2× 10−3 A.
With a magnet width w = 2 µm, we find that a is bounded
by a > −2 000 A m−1 which is satisfied by our choice of
applied field. From (17) a hexapole trap is formed when
the magnets are separated by sm = 2.13 µm. Using (12)
we find that this occurs at a height of y = 3.28 µm. We
separate the magnets by 3.5 µm to form the two horizon-
tal traps. These are located at a height y = 3.42 µm and
at x = ±2.06 µm and value of the field between them
is about 0.28 gauss. The magnet separation is decreased
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to 2.13 µm to form the hexapole trap and then further
decreased to 1 µm to form the two vertical traps. These
are located at x = 0 µm and at heights y = 1.32 µm and
4.87 µm. The value of the field between them is about
0.13 gauss. These field values are sufficient to keep the Cs
atoms in each trap. By increasing the separation again the
vertical loop is closed and the horizontal traps reform.

One application for such a device is an interferometer
that samples the variation with height of some potential.
In this application the device is to act as a waveguide
where it is important to have a single waveguide mode and
for the atoms to remain in this mode. The mode spacing
is determined by the rate of variation of the field through
the centre of the trap. For an ideal quadrupole trap in two
dimensions, the transverse energy of the modes varies as

En =
(
~2/2m

)1/3
(µBmF gFB

′)2/3fn (18)

where m is the mass of the atom, µB the Bohr magneton,
mF the magnetic quantum number, gF the Landé factor
and B′ the gradient of the field magnitude. The factor
fn varies with the mode number n and is calculated nu-
merically using methods described by Davis [4]. The first
four values are 1.75, 2.87, 2.87, 3.67, where the second and
third values are degenerate. The hexapole trap has a har-
monic potential with a mode spacing related to the second
derivative of the field magnitude B′′. In two dimensions
the transverse energy is given by

En = (n+ 1)
(
~2µBmF gFB

′′/m
)1/2

. (19)

The derivatives of the field magnitudes at the locations
of the zeroes can be obtained from the magnitudes of the
field derivatives given by (7). Note that the longitudinal
energy of an atom (i.e. the z-directed kinetic energy) is a
free parameter.

The derivatives at the centres of the traps have been
calculated using (7) as a function of magnet separation
and used to deduce the first three non-degenerate energy
levels in the traps. These energies are expressed in terms of
equivalent temperatures on dividing by Boltzmann’s con-
stant. The results are shown in Figure 8. The three con-
secutive energy levels have temperatures of about 1 µK or
greater except in the vicinity of the hexapole trap where
they drop to 0.21 µK, 0.42 µK and 0.63 µK. The horizon-
tal pair of quadrupole traps have identical energy levels
but the vertical pair do not. The field gradients decrease
with height so that the energy levels of the upper trap are
lower. If the atoms move sufficiently slowly through the
waveguide then their transverse energies will adiabatically
follow the trap energy levels. If this does not occur then
there will be transitions between levels. This is particu-
larly important in the vicinity of the hexapole trap since
the energy levels change rapidly here. In this application,
the rapid change in energy levels associated with merging
of quadrupoles to form a hexapole trap is an undesirable
feature.
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Fig. 8. The energy levels of Cs atoms in a pair magnetic
guide as a function of the separation between magnets. The
labels (+,−) refer to the energy levels associated with the up-
per/lower or left/right traps. The energies are expressed in
terms of equivalent temperatures.

4 Non-ideal currents

The theory presented in Section 2 and applied in Section 3
is strictly only valid for infinitely long, infinitely thin, par-
allel wires. In this section we briefly discuss the effects of
non-parallel wires and bends, as required when we anal-
yse the effects on the magnetic traps of variations in the
spacing of the wires and when they join. This will show
to what extent the simple theory can be applied to these
more realistic systems.

The magnetic field from a current-carrying conductor
is given approximately by

B(r) ≈ −µ0I

4π

∫
(r− r′)× dl′

|r− r′|3 (20)

where I is the current and the integral is taken along the
length l of the wire. For wires of circular cross-section, (20)
is exact when r lies outside the wire [31]. For other wires
with a characteristic dimension d, (20) applies when |r| �
d. For an infinitely long wire making an angle θ with the
z-axis and crossing the x-axis at x0, the magnetic field
obtained from (20) is

B(r) ≈ −µ0I

2π

(
x̂(−y cos θ) + ẑ(y sin θ) + ŷ(x− x̃0) cos θ

(x− x̃0)2 cos2 θ + y2

)
(21)

where x̃0 = x0 + z tan θ is the x coordinate of the wire at
a distance z from the origin. If cos θ ≈ 1, i.e. θ2/2 � 1,
then the x and y components of (21) can be written in
terms of a complex number

Bx − iBy ≈ −
iµ0

2π

(
I

ζ − x̃0

)
· (22)

This is consistent with (2) if we take the complex plane
through the point z on the z-axis and parallel to the
x–y-plane (Fig. 2). The wire then intersects this plane
on the x-axis at x̃0.
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In addition to (22), there is a z-directed field that con-
tributes to the magnitude of the field. The atom trap will
no longer have a zero its centre, although it will still be at
a minimum in the x–y-plane. The location of the trap still
occurs where (22) is zero and therefore will be described
by the roots of the polynomial (5). The z-directed field to
first order in θ is given by

Bz ≈
µ0Iyθ

2π(ζ − x̃0)(ζ∗ − x̃0)
· (23)

This is not an analytic function and it grows linearly with
increasing angle for small angles. Thus for long wires ori-
ented at a small angle θ, the minima of the field in the
x–y-plane are approximately at the same position but
there is a z-directed bias field that depends on position
above the substrate.

When two wires join, such as shown in Figure 2, there
is a change in direction of the currents. We model this
behaviour by considering two wires that join at x0 on the
x-axis at z = 0. We take one wire at angle θ− stretching
from z = −∞ to 0 and the other at angle θ+ from z = 0
to +∞. On solving (20) we find that the solution involves
the term (21) multiplied by an additional factor. In terms
of complex functions b we can write for the two wires

Bx − iBy =
b±
2

(
1± (x− x0) sin θ± + z cos θ±√

(x− x0)2 + y2 + z2

)
(24)

where we use − for z < 0 and + for z > 0. The total
field at any point is the sum of these two terms. Far from
the ends, the field reduces to that given by (22). At the
join z = 0 and for θ2/2 � 1, we find from (22) that
b− ≈ b+ ≡ b so that the total field in the x–y-plane is

Bx − iBy ≈ b
(

1 +
(x− x0)(θ+ − θ−)
2
√

(x− x0)2 + y2

)
· (25)

This field is not given by an analytic function except when
x = x0. It becomes more accurately described by the par-
allel wire case for small angle differences and for distances
far above the substrate. The non-analytic term in (25) pro-
duces differences between the actual locations of the zeroes
and those predicted from roots of the polynomial (5). The
differences increase with increasing bend angle. Therefore
the simple theory should only be applied to configurations
in which the angles are small, so that x̃0 varies slowly with
z, and it will become less accurate near regions where the
wires change direction. In addition there is a z-directed
field associated with the bend. At the join this is given to
first order in θ by

Bz ≈
µ0Iy(θ− + θ+)

4π((x− x0)2 + y2)
· (26)

Note that for two wires placed symmetrically about the
z-axis, so that θ− = −θ+, the first order z-directed field at
z = 0 is zero, leaving only second order and higher terms.

Since all of the above functions vary smoothly to the
ideal case as θ → 0 then there are no discontinuous

changes in the properties of the traps. Therefore we expect
that the qualitative features of the traps, as discussed in
Sections 2 and 3, will be described by the complex polyno-
mial P . (We have verified this in a number of cases using
a computer model to calculate the magnetic fields from
thick, non-parallel, permanent magnets.) The precise lo-
cations of the trap minima and the values of the gradients,
however, will depend on the actual conditions, such as the
wire cross-sections, the presence of junctions, etc. As dis-
cussed in the introduction, numerical techniques are best
employed to determine the fields in the non-ideal case.

5 Conclusion

In this paper a simple theory using complex numbers is
used to describe the properties of magnetic traps for atoms
created from sets of current-carrying wires. Many proper-
ties of the traps can be deduced from a polynomial that
depends on the currents in the wires and their positions
and on the strength of an applied magnetic field. We have
shown that the locations of the zeroes of the magnetic
field can exhibit complicated behaviour as the parame-
ters of the traps are varied. This behaviour is simply a
consequence of the degeneracies of the roots of the poly-
nomial. The theory shows explicitly the relationship be-
tween quadrupoles and higher- order multipoles and the
inherent stability of the quadrupole. We have introduced
a zero diagram as a graphical aid to understanding the
trajectories of the zeroes in the complex plane as one of
the parameters is varied and we have used this to explain
unexpected occurrences of zeroes in the field. The theory
based on the complex polynomial provides a number of
principles that are useful in designing more complicated
atom-optics devices using magnetic fields.
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